
1

Strategies and Techniques for Automation as Implemented
in EO-1 Flight Operations

Russell DeHart1 and Baran Sahin2

Honeywell Technology Solutions Incorporated, Greenbelt, Maryland, 21054

The Earth Observing-1 (EO-1) spacecraft was developed as part of the NASA New
Millennium Program (NMP). In December 2001, NASA Headquarters approved the EO-1
program to begin an Extended Mission operations phase. The Extended Mission seeks to
maximize the infusion of EO-1 technology through increased utilization of the satellite and
reduce the cost of operations through a Continuous Improvement Program (CIP). A key
objective of the CIP is to reduce operations costs by increasing automation use. The three-
person EO-1 Flight Operations Team (FOT) is responsible for four main tasks: flight
dynamics processing, mission planning, real-time engineering, and engineering analysis.
Both automation and meta-automation—using an additional layer of automation to control
separate automated processes—are utilized by the FOT. Techniques and strategies for
implementing automation are discussed. Criteria are presented to judge the appropriateness
of a procedure for automation. They are grouped into categories: ease of implementation,
return on investment, and degree of feedback. Factors that affect the design of an
automation scheme include: available operating systems, strengths of commercial and in-
house tools, tool familiarity, desired error checking structure, and desired nature of operator
feedback. Unit testing, acceptance testing, parallel operations, documentation, training, and
configuration management are necessary to implement automation in flight operations.
Automation lowers labor costs, but also benefits an FOT by standardizing procedures.
However, negative consequences can occur as a result of implementation, including loss of
knowledge, operators trusting process over output, inappropriate use of automated
procedures, and increased system administration issues. The automation implemented by
the EO-1 FOT is also discussed. For flight dynamics processing, the orbit determination and
prediction procedure has been automated piecewise. Manually, this procedure required
approximately three hours; automated, the procedure lasts 30 minutes, during which the
user can intermittently leave the workstation to perform other tasks. Automation has been
applied to the command load generation procedure, where appropriate. Most importantly,
the real-time support procedure has been fully automated and can receive, process, deliver,
and confirm commands without human input. The system also monitors telemetry and sends
notifications to the FOT, signaling nominal or anomalous operations. While conducting
engineering analysis, the FOT performs operations requiring extensive human judgment
and custom processes, including analyzing telemetry, designing spacecraft maneuvers, and
designing new command sequences. The time savings obtained through automation allows
the FOT time to perform these more dynamic tasks. Throughout the course of implementing
automation, the EO-1 FOT has learned lessons useful to other flight operation teams. These
include the importance of each of the following: 1) configuration management; 2)
redundancy in FOT being capable of repairing automation; 3) tool familiarity; 4) adequacy
of new employee training; 5) occasionally conducting manual processes; 6) extensive
documentation; 7) combining tools of increasing complexity; 8) the ability to automate GUI
input; 9) continuing process improvement throughout the mission; and 10) not viewing
automation purely as a labor-saving device.

1 Systems Engineer, Mission Operations and Mission Services—Flight Operations, NASA GSFC M/S 428.2, Non-
member.
2 EO-1 FOT Lead Engineer, Mission Operations and Mission Services—Flight Operations, NASA GSFC M/S
428.2, Non-member.

SpaceOps 2008 Conference (Hosted and organized by ESA and EUMETSAT in association with AIAA) AIAA 2008-3338

Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes.
All other rights are reserved by the copyright owner.



2

I. Background
HE Earth Observing-1 (EO-1) Mission was a consequence of the Land Remote Sensing Policy Act of 1992
(Public Law 102-55) wherein NASA was charged to ensure Landsat data continuity through the use of

advanced technology. Consequently, EO-1 was designed to flight-validate breakthrough technologies applicable to
Landsat follow-on missions. More specifically, the EO-1 design included: multispectral imaging capability that
addressed the traditional Landsat user community; hyperspectral imaging capability with backward compatibility
that addressed the Landsat research-oriented community; calibration test bed to improve absolute radiometric
accuracy; and atmospheric correction to compensate for intervening atmosphere effects.

The EO-1 spacecraft was developed as part of the NASA New Millennium Program (NMP). The NMP was
charged to: develop and flight-validate revolutionary technologies; reduce development risks and life cycle costs of
future science missions; enable highly capable and autonomous space systems; and promote nationwide technology
teaming and coordination. As part of the NMP, the mission of the EO-1 spacecraft was to develop and validate a
number of instrument and spacecraft bus breakthrough technologies1:

1) Multispectral Imaging Capability
2) Wide Field, High Resolution, Reflective Optics
3) Silicon Carbide Optics
4) Hyperspectral Imaging Capability
5) Atmospheric Corrector
6) X-Band Phased Array Antenna
7) Wideband Advanced Recorder and Processor
8) Enhanced Formation Flying
9) Lightweight Flexible Solar Array
10) Carbon-Carbon Radiator
11) Pulsed Plasma Thruster
12) LA-II Thermal Coating
In addition, another mission objective was established under the NASA Research Announcement NRA-99-OES-

01, issued jointly by NASA and the U.S. Geological Survey (USGS). This objective was to evaluate the ability of
the instruments to produce images suitable for performing defined science validation investigations. As a result, 30
principal investigators were selected to form a Science Validation Team (SVT).

EO-1 was launched on November 21, 2000 into a polar orbit with an equatorial crossing time of 10:03 a.m.
(descending node), an altitude of 705 km, an inclination of 98.2 deg., and an orbital period of 98 minutes. The
mission had a design life of 18 months and a nominal life of 12 months.

A. Extended Mission
The EO-1 program completed its baseline mission requirements successfully after one year of operations on

November 20, 2001. In December 2001, NASA Headquarters approved a plan to permit the EO-1 Program to
embark on an Extended Mission operations phase. The objective of the Extended Mission is to maximize the
infusion of EO-1 technology by simultaneously increasing utilization of the on-orbit resource and to reduce the cost
of operations through a Continuous Improvement Program. Two of the main objectives of the improvement program
are to serve as a test-bed for new technologies, such as SensorWeb technologies, and to reduce the cost of EO-1
operations by increasing the use of automation2.

B. Spacecraft Operations
The EO-1 spacecraft continues to collect useful science data well past its design life. All three instruments—the

Advanced Land Imager (ALI), the Hyper-Spectral Imager (HSI), and the Atmospheric Corrector (AC)—continue to
functional nominally. In fact, only two spacecraft anomalies currently have any negative impact on EO-1 operations.
First, a failure of the ALI solar calibration aperture selector (utilized to vary sunlight on the solar calibration diffuser
plate located within the instrument) causes any ALI solar calibrations to collect sunlight at a constant illumination
level rather than over the entire dynamic range. Second, a failure of the interface from the Command and Data
Handling (C&DH) processor to the S-band communications subsystem causes an inability to playback engineering
data recorded between contacts1.

To maintain an orbit conducive to imaging, all remaining fuel is being used to conduct periodic inclination
burns. With the aid of these burns, the project plans to preserve the quality of the science collected by maintaining
orbit altitude and an equatorial crossing time of 10:00 a.m. (descending node). A de-orbit waiver was granted by

T



3

Figure 1. Example Process before Automation.

Figure 2. Example Process after Automation.

NASA Headquarters in October 2007. The EO-1 mission has been granted an extension until 2009, with the
possibility of an additional two-year extension.

C. Flight Operations
The three-person EO-1 Flight Operations Team (FOT) is responsible for four main tasks: flight dynamics

processing, mission planning, real-time engineering, and engineering analysis. The main procedures included in
each of these tasks are described briefly below.

1. Flight Dynamics Processing
The EO-1 FOT is responsible for determining the current spacecraft orbit and to predict the spacecraft orbit for

the next 35 days. Using this prediction, the FOT generates and distributes event windows, such as station in-views
and eclipse times. The FOT also generates and delivers orbit path data for image planning. In addition to this routine
processing, the FOT also designs orbital maneuvers and instrument calibration maneuvers. Lastly, analysis of
spacecraft attitude is performed for any special images or anomalies. Autoproducts, Autocon, MATLAB, and
Satellite Tool Kit (STK) are used to process flight dynamics data.

2. Mission Planning
The EO-1 program currently utilizes two systems for mission planning. One is the Automated Scheduling and

Planning Environment (ASPEN), which is currently operated at the Jet Propulsion Laboratory (JPL). ASPEN
utilizes flight dynamics input from the FOT,
image requests from mission scientists, and a
technique called “iterative repair” to
formulate daily activity schedules for the EO-
1 spacecraft3. In addition, JPL utilizes
ASPEN in conjunction with the Continuous
Activity Scheduling Planning Execution and
Replanning (CASPER) onboard flight
software to generate primary spacecraft
command loads4. References 3 and 4 provide
further details on these systems.

The other mission planning system is the
Mission Operations and Planning SubSystem
(MOPSS). Some primary command loads and
all backup command loads are generated by
the FOT using MOPSS. In addition, the FOT
is responsible for updating and deconflicting
the spacecraft schedule, generating and
delivering daily spacecraft activity reports,
and maintaining a database of spacecraft
activities.

3. Real-Time Engineering
The FOT is responsible for operating all real-time supports. This includes performing all commanding of the

spacecraft, managing spacecraft memory and flight software, and monitoring spacecraft telemetry. Thirty-five
months after launch, the FOT transitioned to lights-out operations. The EO-1 mission utilizes the NASA Advanced
Spacecraft Integration and System Test Software (ASIST) for the real-time command and control system.

4. Engineering Analysis
The FOT analyzes and trends telemetry received

from the spacecraft. Any anomalous data are
investigated and necessary actions are coordinated
with subsystem engineers. In addition, the orbit is
analyzed and spacecraft maneuvers are designed to
maintain desired equatorial crossing times and
altitudes. The FOT also designs and implements
new commanding sequences as requested by
mission scientists, such as developing new
instrument calibrations. Lastly, any anomalies that
occur in the ground systems are investigated and
resolved.



4

D. Automation Definitions
In this paper, the term “automation” is defined as the controlled operation of a process by computer software that

replaces human labor. Example process maps for a procedure before and after implementation of automation are
illustrated in Fig. 1 and 2.

An automated process, such as that shown in Fig. 2
in which automation has been applied to the process in
Fig. 1, can be started either directly by human operators
or automatically by software. In the case of automatic
execution, tasks can be started either at a set time, or
absolute time referenced, or after a certain criteria is
satisfied, or relative time referenced.

During the life of a mission, process improvement
initiatives may lead to the desire to automate a group of
tasks that are currently individual automated processes.
In this paper, the term “meta-automation” is used to
describe the use of an additional layer of automation to
control separate automated processes. Figure 3 shows
the resulting process map after meta-automation is
implemented on the procedure provided in Figure 2.
Often meta-automation requires feedback from the
automated sub-tasks in order to appropriately control the
entire procedural flow.

E. Tool Classification
The definition for automation provided in the previous section describes software as being the controlling agent.

The types of software used can be further broken down into four main groups. They are, in increasing order of
sophistication: Operating System (OS) tools, stand-alone scripts/languages, coding languages resident in
applications, and automation software. Examples are provided below:

1) OS tools: crontab (Linux/Unix), Windows services (Windows)
2) Stand-alone scripts/languages: Perl, C/C++, AutoIt
3) Resident languages: STOL (ASIST), VBA (MS Applications)
4) Automation software: Autoproducts
An automation scenario will often implement a combination of the above tools, such as in the case of using a

cron job to start a Perl script. The next remainder of this paper discusses: characteristics of procedures that are
suitable for automation; techniques for implementing automation; advantages and disadvantages of implementing
automation in a flight operations environment; the manner in which automation has been applied to the EO-1
mission; and the lessons learned by the EO-1 FOT.

II. Method

A. Identification of Target of Procedures
Many motivations drive flight operation teams to implement automation, including the goal of reducing labor

costs. An initial investment in labor is required, though, to implement automation. Hence, when deciding which
procedures to automate as part of flight operations, procedures should be prioritized by the degree to which they are
amenable to automation. Below are criteria by which to judge the appropriateness of a procedure for automation.
They can be grouped into categories: Ease of Implementation (items 1 – 4), Return on Investment (items 5 and 6),
and Degree of Feedback (items 7 and 8).

1) Minimal variation in process: Procedures that consist largely of the execution of stable, well-defined tasks
are well-suited for automation. The automation of these procedures will not require extensive logic or
branching of algorithms.

2) Predictable execution: Procedures that commence at designated times (absolute time referenced) or upon
the satisfaction of some criteria (relative time referenced) are amenable to high levels of automation.
Execution times can be programmed in advance so that procedure execution is transparent to the user.

3) Localized process: Procedures that are executed on a single platform or location are more suitable for
automation than those executed across multiple platforms. Localized processes generally include an easily
identifiable nucleus in which to control the process.

Figure 3. Example Process after Meta-Automation.



5

4) Well-documented procedures:
Often, a Standard Operating
Procedure (SOP) or Local
Operating Procedure (LOP)
document that defines a process
can serve as a flowchart to
organize the automation code that
needs to be developed. In
addition, generating the
documentation for the automated
process is often assisted by
referencing these documents.

5) Frequent execution: The labor
savings attained by automating a
procedure is dependent in large
part on the frequency with which
that procedure is executed. Little
advantage is gained by automating
procedures that are rarely
implemented.

6) Prolonged execution: Likewise,
labor savings are maximized if
procedures that require a large
investment of labor are
automated. Such procedures often
require extensive user feedback;
however, such tasks can often be
addresses piecemeal as described
below.

7) Minimal feedback: The use of
feedback, whether in the form of
ingesting output from other
processes or in the form of more
complex human interaction,
complicates an automation
scheme. When human judgment is
not required—such as using an
ephemeris generated by another
process—the implementation is
straightforward and simply necessitates additional automation code (e.g., checking for completion of
ephemeris generation and performing basic quality assurance). When human judgment is required, such as
determining if a calculated drag coefficient is reasonable, other techniques are often required. One
technique is breaking the overall procedure into compartmentalized processes.

8) Compartmentalization of process: The next section of this document describes the method of defining a
procedure by developing a process map. After the development of a process map, it is often determined that
a procedure is very extensive or has many junctures at which human input is required. In both cases, the
process map can help identify portions of the procedure that can be grouped into semi-independent
processes, which are amenable to automation. In the case of lengthy procedures, sub-processes can be
automated in a piecemeal fashion. In the case of human input, the points in the procedure where operator
input occurs can serve as the breaking points between automated sub-processes. If a procedure does not
appear to be easily compartmentalized, this procedure may not be suitable for automation.

B. Automation Design

Figure 4. Example Process Map.



6

1. Procedural Definition
As was introduced in the previous section, often

the nature of a procedure (for example, many
instances of feedback) will dictate the design of an
automation scheme. It is beneficial to have a blueprint
that defines the procedure to be automated on an
operational level. A process map is a diagram that
visualizes the flow of work throughout a procedure,
which can vary in detail but typical includes at a
minimum: start and end points; inputs from outside the
procedure; outputs from the procedure; the tasks
performed at each step in the procedure; and any
feedback loops from one task in the procedure to
another5. When identifying feedback loops, be sure to
include any error captures. Furthermore, for the sake
of automation design, it is also beneficial to label all
external inputs as human-generated or machine-
generated and as absolute time referenced, relative
time referenced, or unpredictable. An example process
map is provided in Fig. 4.

The procedure illustrated in Figure 4 is most likely
too unwieldy to entirely automate as one single
automated procedure. Instead, using the concepts
discussed in the previous section, the procedure can be
improved by breaking the procedure into automated
sub-processes, where possible. The iterative loop in
which the user selects models and revises those
choices based on output provides a major barrier to
automation. The beginning of the procedure, though,
contains two sequential tasks that require no human
input. Notice that the input data for the two tasks are
received at the same time each day. In this situation, it
is appropriate to use a “cron” or “at” job to start
execution of a script that performs these two tasks.
The beginning automation could be extended further,
if user review of the output is delayed until after the
file transfer utility is executed; in this case, the
beginning of this automation script would reformat data, perform filtering, and transfer files. However, most often
quality assurance is implemented before files are distributed. In this example, then, the timing of human feedback is
limiting the extent of automation. The file transfer utility stands separate from the beginning automation script and
feeds into the iterative model selection loop. The end of the example process provides another opportunity to use
automation. Three sequential tasks are performed without human input. The timing of the receipt of the input data—
the forecast—is uncertain. These three tasks can be automated together as one script, launched by the user after
satisfactory model selection. More sophisticated methods of launching the process include establishing a listener that
waits for data to populate a directory. Regardless of the method, the resulting overall design for the new procedure is
shown in Figure 5.

2. Identification of Driving Factors
Other factors will also affect the design of an automation scheme. Some affect what automation tools to select

whereas other deal more directly with the structure of the automation design. Some factors are provided below.
1) Operating System: The OS being used may dictate what tools are available, both in terms of the capabilities

of the OS and in terms of what COTS software may be available.
2) Commercial versus In-House Tools: Code generated in-house will often be less restrictive than commercial

software; however COTS software may provide less development time. The need for an open-ended or
easily expandable solution should be measured against the need for quick implementation.

3) Tool Familiarity: When selecting a tool to assist with the development of automation, the familiarity of the
FOT with available tools should be taken into consideration, particularly in the case of a small FOT. During

Figure 5. Process Map for New Procedure Design.



7

the life of the mission, the automation will likely need to be updated, expanded, or corrected. Ideally, all
members of the FOT would be capable of performing these actions.

4) Extensive use of error checking in automation is advised. Though this may add complexity to the original
procedure process map, this approach will ensure smooth execution and ease during troubleshooting. The
decision also needs to be made as to whether to automatically terminate the process upon entering an error
state or to allow the operator to correct the condition as it occurs. In the first case, the procedure can be run
without an operator; in the second case, the procedure would be executed with an operator in the loop
(OITL).

5) Likewise, the timing and nature of operator feedback must be decided. Onscreen feedback can be provided
to the operator, but detailed information is best reserved for reports. If all the information can be presented
to the operator as log files at the end of execution for inspection, then such procedures can be run
automatically. If instead the operator is to act on this data at points in the procedure, the automation must
be built in a manner that allows for this OITL interaction.

C. Implementation and Testing
In line with customary software development practice, unit testing—the testing of individual portions of

software—should be conducted before automation code is integrated into one large process. This facilitates the
identification of errors early in the process, when discovering the root cause of software bugs is most easily
performed. After the individual portions of the automation scheme have passed unit testing, the package is ready for
integration and acceptance testing. If the automated procedure functions as desired, the FOT can begin performing
parallel operations, in which both the original and the automated procedures are performed, with the results being
compared to identify any automation errors.

During parallel operations, all conditions in which the procedure is to be performed should be tested. This
typically requires the FOT to develop a test plan that lists all the functions and conditions to be tested during parallel
operations. Certain operations may be conducted by the FOT very infrequently (such as planning orbit-correcting
burns). These operations must be performed for the sake of testing the automation, even though the results will
never reach the spacecraft. Upon satisfactory completion of parallel operations, the automated procedure is ready to
be implemented as part of nominal operations.

Three other actions should be occurring in conjunction with the abovementioned testing process. First,
documentation of the automated process needs to be developed. Often, developing documentation in parallel with
the development process ensures that documentation is generated on a timely basis. Second, members of the FOT
must be trained to perform the automated procedure. If members become familiar with the automation as it is being
developed, they will more likely understand the underlying processes (as opposed to simply knowing how to operate
a black-box system). This understanding will allow FOT members to troubleshoot, repair, and improve the
automation later in the mission. Lastly, all development, repair, and improvement of the automation should be
conducted under a configuration management regime. At a minimum, this should include a repository for the
accepted, configuration-controlled software, a suite of test cases for use in testing updates to that software, a method
of tracking changes and versions of the software, and documentation for the software.

D. Use of Meta-automation
Process improvement initiatives may lead to the desire to automate a group of tasks that are currently individual

automated processes. In fact, this development should be considered during the design of automation. The potential
to control the procedure in question by another higher-level procedure should be examined. Accessible entry and
exit points for future meta-automation should be established. Incorporating the possibility of meta-automation early
in the process provides labor savings later when meta-automation is implemented.

Flight operations includes the use of many different tools across many different platforms. Some tools, such as
those that only accept input through a Graphical User Interface (GUI) may at first appear unsuited for automation.
However, tools exist that facilitate the use of meta-automation, including the case of automated input to GUIs. Some
of these tools will be discussed later in this paper. The implementation of automation can continue throughout the
life of a mission, with higher and higher levels of automation being built.

E. Practical Considerations for Use of Automation in Flight Operations
Flight operation teams often implement automation to generate labor and cost savings. However, potential

pitfalls are present with the use of automation. Both the advantages and disadvantages should be kept in mind when
formulating an automation plan. If the potential disadvantages are kept in mind, preventative steps can be taken to



8

help avoid these pitfalls. Some of the major advantages and disadvantages to implementing automation are provided
below.

1. Advantages
The use of automation helps lower labor costs, but also has the benefit of standardizing the procedures executed

by the FOT. This process standardization yields two benefits. First, the likelihood of operator errors can be
decreased (though the next section describes manners in which automation opens new opportunities for operator
errors). Second, process standardization reduces variability of product, which may assist other agencies in
implementing automation of their own. Extensive use of automation can also help the FOT weather temporary
shortages in available labor, such as those due to changes in staff or due to inclement weather.

2. Disadvantages
Most of the disadvantages discussed here are exacerbated by improper training of FOT. However, all of these

potential pitfalls are present in some form, even in a well-trained FOT. Firstly, the possibility for the loss of
knowledge exists, especially if the FOT experiences a high turnover rate. If not properly trained, operators may only
know how to operate the automation as a black box. If the automation fails, such members would not know how to
conduct the procedure manually without the existence of extensive supporting documentation. Secondly, due to the
perceived infallibility of a standardized process, operators may come to trust process over output. In other words,
operators may be more likely to ignore problems in output or, even worse, not look for problems because of the
perception that the tool does not make mistakes. Thirdly, FOT members may be inclined to use the automated
procedures when inappropriate. The likelihood is increased when operators do not understand the underlying
processes performed by the automation. Lastly, the expanded use of software, code, and OS tools opens more
opportunities for system administration problems. These risks should be considered during the design, rollout, and
use of automation.

III. Results
Four categories of automation tools were presented in Section II: Operating System (OS) tools, stand-alone

scripts/languages, coding languages resident in applications, and automation software. All four levels are utilized by
the EO-1 FOT. The tools being used in each classification are listed below:

1) OS tools: at jobs (Linux/UNIX), cron jobs (Linux/UNIX), shell scripts (Linux/UNIX), batch files
(Windows)

2) Stand-alone scripts/languages: Perl, C/C++, AutoIt
3) Resident languages: STOL (ASIST), PSTOL (ASIST), M-code (MATLAB), STK/Connect (STK), VBA

(MS Applications)
4) Automation software: Autoproducts
The following sections provide details regarding how these tools are implemented and which FOT procedures

are automated.

A. Automation Implemented by EO-1 FOT
As suggested in Section II, procedures that have minimal variation in process and require minimal human

feedback are extensively automated. This allows the small EO-1 FOT time to perform more dynamic tasks, such as
those described earlier under the heading of “engineering analysis.” The following sections describe the automation
implemented in each of the main responsibilities of the EO-1 FOT.

1. Flight Dynamics
The EO-1 FOT is responsible for determining the current spacecraft orbit and to predict the spacecraft orbit for

the next 35 days. The FOT uses this prediction to generate and distribute event windows, such as station in-views
and eclipse times and orbit path data for image planning. This entire procedure is conducted three times each week
and is a very well-defined and stable process. However, the procedure is broad and involves processes on multiple
operating systems. This procedure is well-suited for automation, but built in piecewise fashion. The FOT has
implemented automation extensively for this procedure. A process map for the orbit determination and prediction
procedure is supplied in Fig. 6.



9

The procedure shown in Fig.
6 consists largely of automated
subtasks. First, the OS tools
“at” and “cron” are used to
control the execution of
FDSS_Daily_Script and
FDSS_TDPP_Script. The
FDSS_Daily_Script collects the
input data needed to determine
the spacecraft’s orbit. The
FDSS_TDPP_Script
preprocesses the tracking data
supplied by the ground stations.
Next, a UNIX shell script
preprocesses this data, starts
STK, sends commands to STK
to determine the orbit, and
generates logs for the user to
examine as part of quality
assurance. After the user
validates the orbit
determination, processing
moves to a Windows
workstation. A COTS tool
named Autoproducts is used to
automatically generate the input
files needed in the next step of
the procedure. Next, the user
manually uses the COTS
software FreeFlyer to generate
the future predicted orbit, along
with Improved Inter-Range
Vector (IIRV) and Extended
Precision Vector (EPV) files. A
Perl script is then used to
validate the IIRV and EPV.
Based on the predicted orbit,
Autoproducts is used again, this
time on a UNIX system, to
automatically send commands
to STK to generate the event
windows and orbit path data. After the user manually verifies the prediction output, two UNIX shell scripts are used
to make file deliveries. Lastly, the user manually delivers the IIRV to the Network Control Center (NCC) for TDRS.
Throughout this process, files are shared between the UNIX and Windows platforms via a mapped, shared drive.

Before the FOT implemented the automation outlined above, all the input file preprocessing, STK commanding,
product validation, and file deliveries were performed manually. This entire procedure required three hours. As
currently implemented, the procedure lasts 30 minutes, with some of this time being available for the user to leave
the workstation to perform other tasks. Since this process is conducted so regularly (three times each week), the
FOT experiences large time savings.

As was mentioned in Section I, later in a mission, meta-automation can be implemented to bring together
separate automated subtasks. The FOT is currently working on implementing meta-automation to simplify the
process shown in Fig. 6. Auto-It is a coding language that allows the user to emulate the keystrokes and mouse
operations in a Windows environment. The code structure affords the user the opportunity to automate processes
once thought difficult or impossible to automate (such as sending commands through a GUI). The resulting process
map for the orbit determination and prediction procedure after the implementation of Auto-It is shown in Fig. 7.

Figure 6. Orbit Determination and Prediction Procedure.



10

As shown in Fig. 7, all of
the tasks performed on the
Windows workstation (input
file generation using
Autoproducts, ephemeris
generation using FreeFlyer,
and product validation using
the IIRV_EPV_compare
script) are automated. Auto-It
is used as an overlay to send
commands to these
applications, replacing the
need for an operator during
these steps. Though this will
not appreciably decrease the
amount of time needed to
complete the whole
procedure, it will leave the
operator free to perform other
tasks during execution of this
procedure. As a long-term
goal, the EO-1 FOT aims to
migrate all these tasks onto a
Windows workstation in
order to fully automate the
entire process using AutoIt.

In addition to this orbit
processing, the FOT also
designs orbit maneuvers and
instrument calibration
maneuvers. The specification
of these maneuvers is highly
variable in nature and is not
performed as routinely as the orbit processing (approximately once each month). Additionally, analysis of spacecraft
attitude is performed for any special images or anomalies. These are custom-defined tasks that are performed very
infrequently. Since all these tasks are unpredictable and uncommon, these procedures have not been automated.
Instead, time savings achieved from the orbit processing and other automation is applied to tasks that require more
human input for decision making, such as the design of spacecraft maneuvers.

2. Mission Planning
Each week, the EO-1 FOT works with mission scientists, JPL, and the White Sands Complex Ground Network

Scheduling Office (WSC-GNSO) to establish the activity schedule for EO-1. The requested images, ground station
in-view windows, and ground station availability are used by personnel at JPL, who utilize the Automated
Scheduling and Planning Environment (ASPEN) to formulate the schedule for the EO-1 spacecraft.

Two methods of generating command loads are utilized by the EO-1 mission. In one method, JPL utilizes
ASPEN in conjunction with the Continuous Activity Scheduling Planning Execution and Replanning (CASPER)
onboard flight software to generate spacecraft command loads, named “goals.” In the other method, the EO-1 FOT
uses the Mission Operations and Planning SubSystem (MOPSS) to generate Absolute Time Sequence (ATS)
command loads. The FOT generates command loads on a daily basis. The process of producing command loads
includes the ingestion of several input files and the generation, validation, and distribution of command loads and
activity schedules.

Since the command load generation procedure is conducted daily and consists of some steps that are quite
regular (e.g., file ingestion and file delivery), the FOT has applied automation to this procedure, as appropriate.
Figure 8 illustrates the current FOT command load generation procedure. First, the mission planning software,
MOPSS, receives input data such as ephemeris data, ground station inviews, and eclipse times. These are input using
the FDSS_Ingest shell script. Next, if any special maneuvers are being conducted, the operator must manually ingest
these files. This task has not been automated due to its erratic nature. Image requests from mission scientists are

Figure 7. Orbit Determination and Prediction Procedure after Meta-
Automation.



11

processed as well prior to
ingestion into MOPSS using the
ALI MATLAB tool. Once the
final schedule has been
established, MOPSS can be used
to produce an Unprocessed Daily
Activity Plan (UDAP). This
UDAP is used by the Command
Management System (CMS) to
create the command load. Next,
the ATS_Load_Check Perl script
performs all of the validation
checks that were once performed
manually. Lastly, the
Daily_Activity Auto-It script
implements meta-automation to
conduct several, once individual,
tasks: performs necessary file
transfers between operating
systems; executes VBA macros in
Excel to produce activity
spreadsheets; executes VBA
macros in Access to enter
spreadsheet data into an activity
database; and sends emails
containing the spacecraft schedule
to interested parties.

The main barrier to further
automation of this procedure is
the nature of the operation of
MOPSS and CMS. Both
applications require input from a
GUI and reside on Linux or UNIX
workstations. The tool used by the
FOT to automate GUI
applications, Auto-It, only
functions in Windows
environments. The FOT is
currently investigating other
methods to improve this process.
One avenue is to locate and test similar utilities that function in Linux and UNIX environments. Another approach is
to eliminate the use of CMS by incorporating updated versions of the ground system command and telemetry
software currently in use (ASIST) that can build command loads from the UDAPs generated by MOPSS.

The FOT is also responsible for updating and deconflicting the spacecraft schedule, due to events such as ground
stations becoming unavailable. This work is sporadic and often involves exercising judgment as to when additional
supports should be scheduled and contacting all involved parties. Consequently, the implementation of automation
would not be appropriate for this responsibility.

3. Real-Time Engineering
The FOT is responsible for operating all real-time supports. This includes performing all commanding of the

spacecraft, managing spacecraft memory and flight software, and monitoring spacecraft telemetry. Thirty-five
months after launch, the FOT transitioned to lights-out operations. As currently implemented, the EO-1 FOT real-
time automation is allowed to conduct all regularly scheduled ground station supports. Even during staffed periods,
operators only observe automation during passes. If ad-hoc passes are conducted, such as performing a blind
acquisition contact to deliver a supplemental command load, FOT may conduct the support manually. Many
automation components are required to perform this procedure. The process is made more complex by the fact that
commands for the spacecraft are generated at two facilities (GSFC and JPL). Moreover, commands in the form of

Figure 8. Command Load Generation Procedure.



12

goals are received from JPL
intermittently throughout any
given 24-hour period. Hence, this
procedure must be fully
automated and be able to receive,
process, deliver, and confirm
commands without human input.
This automated real-time support
procedure is illustrated in Fig. 9.

First, the operator executes the
Automation script which parses
the output generated by the
mission planning procedure
shown in Fig. 8. The script
proceeds to generate a shell script
and an entry in the at job queue of
the Linux OS for each scheduled
contact. The at job is designed to
execute the shell script six
minutes before scheduled
Acquisition of Signal (AOS). The
shell script, in turn, contains
Spacecraft Test and Operations
Language (STOL) directives that
configure ASIST for the contact.
This includes launching the
Station_AOS_Auto STOL
procedure, which is the
controlling procedure for the pass.
The AOS procedure calls other
procedures which are responsible
for specific aspects of the pass.
For example, the
EO1_Limon_Ops procedure
establishes the constraint limits
for telemetry.

Another procedure which is
executed is GN_CMD_Auto. This
procedure controls all
commanding during the contact.
Verification of commanding status is performed before any command is executed. Also, dumps and compares of
command loads are conducted to ensure the commands were delivered successfully before committing to an activity
schedule. Commands originate from one of three sources. First, GN_CMD_Auto itself attempts to conduct
downlinks of science metadata (e.g., science data directory listings). Second, command loads (“goals”) are delivered
to the EO-1 MOC from JPL on a continual basis. The Sensor Goal Monitor (SGM) receives and processes these
files, sending notifications to the FOT. It also builds a STOL procedure that will uplink the command load to the
spacecraft and places the procedure in an archive directory. After the science metadata is downlinked,
GN_CMD_Auto checks the directory and executes any goal file uplink procedures, with the oldest procedure being
executed first. Third, a queue directory is utilized to place STOL procedures that are to be conducted autonomously
by GN_CMD_Auto. Operators or automation can place procedures here. For example, every Sunday, maintenance
of the onboard GPS is conducted by the automatic placement of the GPS_Set_EOP procedure in this directory.
Another use of the queue directory is the delivery of FOT-generated ATS command loads. The operator places an
ATS_Auto procedure in the queue directory. When GN_CMD_Auto executes this procedure, the ground system
obtains the desired ATS load and uplinks the command load. Finally, GN_CMD_Auto also verifies that sufficient
time remains in a pass to conduct commanding; if the time remaining is less than two minutes, no further commands
are sent.

Figure 9. Real-Time Support Procedure.



13

At the scheduled Loss of Signal (LOS), the Station_LOS_Auto STOL procedure is executed, which generates all
log files for the contact. Finally, the Automatic Notification System (ANS) parses through these logs and sends
notifications to the FOT, signaling either nominal or anomalous operations. Warnings are also sent to the FOT by
the ATQ_Checker script that checks the contents of the at jobs queue and the goal directory. For instance, if the at
jobs queue is nearly empty (signifying only a few passes remain to be conducted), notifications are sent to the FOT.

The implementation of this automation yields large labor savings for the EO-1 FOT. Before the transition to
automated real-time operations, six operators were employed solely to conduct manual passes. The FOT now
numbers three individuals, who conduct all the procedures outlined in this document. In addition, the use of
automation for real-time supports greatly reduces the likelihood that erroneous commands are accidentally delivered
to the spacecraft via operator error.

4. Engineering Analysis
In the domain of engineering analysis, the FOT performs operations that require extensive human judgment and

custom processes. These operations include analyzing telemetry, designing spacecraft maneuvers, and designing
new command sequences. The only area suitable for automation is the process of ingesting telemetry into the
trending database. The Data Trending and Analysis System (DTAS) is currently used by the EO-1 mission for
trending telemetry values. The FOT is presently investigating methods to automate the population of the telemetry
database, including the use of different trending software.

B. Automation Lessons Learned
Throughout the course of implementing process improvements through automation, the EO-1 FOT has learned

many lessons that are of use to other flight operation teams. Some of these lessons are ways to avoid potential
pitfalls. Others are techniques that repeatedly prove their usefulness. A summary of the most important lessons
learned is given below:

1) Configuration management procedures must be strictly enforced. The change of just one line of code could
have considerable impact on a mission. Since such minor changes are transparent to the user, a method
must be in place to ensure the operator is implementing the correct version of a procedure. Proper
configuration management is critical to continuing reliable operations.

2) Ensure multiple members of an FOT are capable of updating or repairing automation code. Though many
or all members may understand the underlying steps, not all members may be familiar with the language or
software used to automate the procedure. If such knowledge rests in the hands of only a few (or one)
member, the FOT could possibly lose the ability to maintain automation with the loss of just one employee.
For small FOTs, this may indicate that every member be familiar with the automation code.

3) More familiar solutions may be a better choice than more eloquent solutions. As a consequence of lesson
#2, if presented with multiple choices of tools to implement automation—such as when choosing a coding
language—choose the tool most familiar to the FOT. In a flight operations environment, reliability of
operations is far more important than the style in which those operations are conducted.

4) Ensure that new employees are trained in performing both the automated and manual versions of a
procedure. Otherwise, a mission could eventually reach the point where no members are familiar with
manual operations. If the automation fails or needs updating, the FOT will be ineffective.

5) Occasionally conduct automated procedures in parallel with the manual process. Compare the output of
both processes to ensure the quality of the product that is delivered and to ensure that knowledge of the
manual process is indeed functional. This tactic may be implemented as part of lesson #4, though all FOT
members should be included, not just new employees.

6) Ensure that all processes, automated or manual, are extensively documented. Documentation helps not only
ensure that knowledge is not lost, but the information contained therein can also serve as a foundation for
process maps and algorithms. Therefore, documentation protects established procedures and helps in the
development of new ones. In addition, documentation in the form of runtime logs assist in the identification
of automation errors. When implementing meta-automation, ensure that all logs of sub-processes are
carried through the whole parent procedure.

7) Certain combinations of tools are extremely useful. For instance, the Linux/UNIX at job queue is used
extensively in EO-1 FOT automation in conjunction with shell or Perl scripts. These scripts often act as a
control agent that launches other more complex scripts. In some cases the subscripts then send commands
to software, such as using the STK/Connect module to send commands to STK or using STOL to send
commands to ASIST. In this fashion, a broad network of automated tasks can be built with increasing
levels of complexity, moving from at jobs, to shell scripts, to Perl scripts, and finally to COTS software.



14

8) The collection of tools available to an FOT should include tools that enable automation of GUI input.
Tools, such as Auto-It, which emulate keyboard and mouse input, allow the user to automate input to any
software being used on a platform. This in turn allows the user to bridge gaps in older automation, gaps that
existed due to breaks in the process that required GUI input. Bridging these gaps can bring many processes
under the control of one meta-automation script.

9) Flight operations teams should continue process improvement through the lifecycle of a mission. If
budgetary concerns begin to threaten missions, those missions that deliver useful science in the most cost-
effective manner are likely to be extended. One key method to increasing the efficiency of an FOT is the
use of automation.

10) Automation should not simply be viewed as a labor saving device. Such a viewpoint may lead FOT
members to undervalue the additional work (such as configuration management) that is required to properly
implement automation. Automation is an investment that at first requires increased time and labor but
ultimately pays off with increased reliability and efficiency.

IV. Conclusion
The EO-1 spacecraft was developed as part of the NASA New Millennium Program. As part of the NMP, the

mission of the EO-1 spacecraft was to develop and validate a number of instrument and spacecraft bus breakthrough
technologies. In December 2001, NASA Headquarters approved a plan to permit the EO-1 Program to embark on an
Extended Mission operations phase. The objective of the Extended Mission is to maximize the infusion of EO-1
technology by simultaneously increasing utilization of the on-orbit resource and to reduce the cost of operations
through a Continuous Improvement Program. A key objective of the improvement program is to reduce the cost of
EO-1 operations by increasing the use of automation.

The three-person EO-1 Flight Operations Team is responsible for four main tasks: flight dynamics processing,
mission planning, real-time engineering, and engineering analysis. Both automation and meta-automation, the use of
an additional layer of automation to control separate automated processes, are utilized by the FOT. Both strategies
for implementing automation, and the results obtained by the EO-1 FOT, are discussed.

Criteria by which to judge the appropriateness of a procedure for automation can be grouped into categories:
ease of implementation (minimal variation in process, predictable execution, localized process, well-documented
procedures); return on investment (frequent execution, prolonged execution); and degree of feedback (minimal
feedback, compartmentalization of process). After a procedure has been identified as appropriate for automation, the
design often begins with the development of a process map. The process map aids in visualizing the flow of work
throughout a procedure. The map often identifies factors that affect the design of an automation scheme. These
include: available operating systems, strengths of commercial and in-house tools, tool familiarity, desired structure
of error checking, and desired nature of operator feedback.

Automation eventually provides labor savings, though a large amount of work must be performed initially. After
automation has been built, unit testing, acceptance testing, parallel operations, documentation, training, and
configuration management are all necessary to implement the automation into flight operations. The use of
automation eventually helps lower labor costs, but also has the benefit of standardizing the procedures executed by
the FOT. However, risks are also present when implementing automation, including the possibility of the following:
loss of knowledge, operators trusting process over output, inappropriate use of automated procedures, and increased
system administration problems. These risks should be considered during the design, rollout, and use of automation.

The EO-1 FOT utilizes many tools for automation, including: OS tools (at jobs, cron jobs, shell scripts, and
batch files), stand-alone languages (Perl, C/C++, AutoIt), resident languages (STOL: ASIST, M-code: MATLAB,
STK/Connect: STK, VBA: MS Applications), and automation software (Autoproducts). For flight dynamics
processing, the orbit determination and prediction procedure has been automated in piecewise fashion. Manually,
this procedure required three hours. As currently implemented, the procedure lasts 30 minutes, with some of this
time being available for the user to leave the workstation to perform other tasks. Automation has been applied to the
command load generation procedure, where appropriate. Most importantly, the real-time support procedure has been
fully automated and can receive, process, deliver, and confirm commands without human input. The system also
monitors telemetry and sends notifications to the FOT, signaling either nominal or anomalous operations. In the
domain of engineering analysis, the FOT performs operations that require extensive human judgment and custom
processes, including analyzing telemetry, designing spacecraft maneuvers, and designing new command sequences.
The time savings obtained through automation allows the small EO-1 FOT time to perform these more dynamic
tasks.



15

Throughout the course of implementing process improvements through automation, the EO-1 FOT has learned
many lessons that are of use to other flight operation teams. Issues that are important to other missions include the
importance of each of the following: 1) configuration management; 2) redundancy in FOT being capable of
repairing automation; 3) tool familiarity; 4) adequacy of new employees training; 5) occasionally conducting manual
processes; 6) extensive documentation; 7) combining tools of increasing complexity; 8) the ability to automate GUI
input; 9) continuing process improvement throughout the mission; and 10) not simply viewing automation as a labor
saving device, but rather as an investment.

References
1Young, J. et al., “Baseline Mission,” Earth Observing-1 preliminary technology and science validation report [online

database], URL: http://eo1.gsfc.nasa.gov/new/validationReport/ [cited March 2008].
2Young, J. et al., “Continuous Improvement Plan,” Earth Observing-1 preliminary technology and science validation report

[online database], URL: http://eo1.gsfc.nasa.gov/new/validationReport/ [cited March 2008].
3Rabideau, G., Knight R., Chien S., Fukunaga A., Govindjee A., “Iterative Repair Planning for Spacecraft Operations in the

ASPEN System,” International Symposium on Artificial Intelligence Robotics and Automation in Space, SP-440, ESA, Paris, pp.
99-106, 1999.

4Tran D., Chien S., Rabideau G., Cichy B., “Flight Software Issues in Onboard Automated Planning: Lessons Learned on
EO-1,” International Workshop on Planning and Scheduling for Space, ESA-ESOC, Darmstadt, Germany, 2004.

5Pyzdek, T., The Six Sigma Handbook, Revised and Expanded, 2nd ed., McGraw-Hill, New York, 2003, Chap 8.


