Science Goal Monitor

presented by
Sandy Grosvenor

Experiments with Sensor Webs using EO-1, March 2, 2004

SGM can be found at http://aaaprod.gsfc.nasa.gov/SGM
Contents

• What is the Science Goal Monitor
• SGM and the EO-1 Sensor Web demos
• SGM Architecture
• Other SGM collaborations
What is the Science Goal Monitor?

- Captures scientifically expressed goals and reactions for executing science campaign
- Autonomously processes goals: monitoring data from independent sources and reacting dynamically when specified goals are met
- Provides coordinated response to data received from multiple independent resources (missions, sensors, or theoretical models)
What is the Science Goal Monitor?

- Prototype designed for a distributed environment: some analysis onboard, some on the ground
- Low TRL, small development team
- Funded through NASA’s Computing, Information And Communication Technologies - Intelligent Systems (CICT-IS) program
SGM and EO-1, Rapid Fire Demo

Scientists select area of interest, initiates campaign

EOS DAAC / RapidFire System

MODIS data

Terra

Aqua

SGM Web Monitor

SGM
- monitors data for fires in target area
- coordinates with EO1 to initiate image requests
- monitors image status

EO-1

image request

EO-1 Ops Center

image data

image requests

status, image data

status, updates and (when ready) link to new image

goals, reactions

SGM and EOS

SGM can be found at http://aaaprod.gsfc.nasa.gov/SGM

Experiments with Sensor Webs using EO-1, March 2, 2004
SGM and EO-1

- SGM provides data analysis and autonomous coordination between multi-mission data sources
- SGM web interface gives scientists ability to initiate campaigns and monitor status of campaign
- Can perform either short-term event driven campaign or longer term monitoring campaigns

Experiments with Sensor Webs using EO-1, March 2, 2004

SGM can be found at http://aaaprod.gsfc.nasa.gov/SGM
SGM Architecture

• Core monitor is 100% Java, OS independent
 - currently developing and testing in both Linux and Windows environments

• Development tools all open source or freely available
 - Java; Eclipse; Tomcat; databases such as mySql, PostgreSQL, HsqlDb

• “Plug-in” modules let SGM monitor multiple data sources including POP email text messages, FTP, or other protocols

Experiments with Sensor Webs using EO-1, March 2, 2004
SGM can be found at http://aaaprod.gsfc.nasa.gov/SGM
SGM Components

- **RapidFire Data**
- **EO-1 Image Archive**
- **Data Providers**
- **EO-1 scenario analyzer**
- **Analyzers**
- **EO-1 Mission Ops**
- **Actions**
- **EO-1 presentation**
- **SGM Web Front-End**
- **Campaign data**
- **Goal Manager**

- **SGM Components**
 - = Core SGM Component
 - = EO-1 Plug-In Component

Experiments with Sensor Webs using EO-1, March 2, 2004
SGM can be found at http://aaaprod.gsfc.nasa.gov/SGM
Data Providers/Analyzers

Data providers are interfaces to different sources of science data. SGM has “standard” interfaces for access such as FTP or POP-based email; or they can be customized for unique data formats.

Analyzers are background tasks that monitor data from providers and perform analyses, saving results in “buckets” that the SGM Monitor can query.

Experiments with Sensor Webs using EO-1, March 2, 2004

SGM can be found at http://aaaprod.gsfc.nasa.gov/SGM
The Goal Manager manages the progress of a campaign. It:
• handles requests from campaigns (e.g. starting/stopping data analyzers)
• monitors campaign’s active “goals” to see if their “criteria” have been met.
• fires “Actions” when a criteria is met (e.g. perform next step of campaign, send image request to EO-1 MOPSS, etc)

Campaign information and status is stored in a centralized, web-accessible database.
Sample Activity Diagram
Rapid Fire scenario

Experiments with Sensor Webs using EO-1, March 2, 2004

SGM can be found at http://aaaprod.gsfc.nasa.gov/SGM
Other Collaborations: SMARTESSMARTS

- **Small and Moderate Aperture Research Telescope System:**
 - 4 telescopes in Chile
 - Consortium of universities and organizations led by Yale
- **Observing schedule:**
 - currently manually generated on daily basis
 - fixed for the night once forwarded to the mountain
- **Goals:**
 - improve reaction time to unpredictable astronomical events
 - better understand risk, benefits, and costs to implementing an operational dynamic, autonomous observing schedule
- **SGM will:**
 - monitor alert sources or perform scientific analysis on an image
 - re-schedule rest of night’s schedule to handle new priorities

Experiments with Sensor Webs using EO-1, March 2, 2004

SGM can be found at http://aaaprod.gsfc.nasa.gov/SGM
Upcoming SGM Features

- Interface to ASPEN scheduler
- Improved ability to define new campaign templates
- Better handle multiple simultaneous campaigns, longer term campaigns
- Improved central database support and access from geographically disperse locations
Additional SGM Information

- http://aaaprod.gsfc.nasa.gov/SGM