Lights Out Operations of a Multi-Asset Air, Ground, Space Sensorweb

Steve Chien, Daniel Tran, Mark Johnston, Ashley Gerard Davies, Rebecca Castano, Gregg Rabideau, Benjamin Cichy, Joshua Doubleday, David Pieri, Lucas Scharenbroich, Sharon Kedarı, Yi Chao
Jet Propulsion Laboratory, California Institute of Technology
Dan Mandl, Goddard Space Flight Center
Stuart Frye, Noblis,
WenZhan Song, Washington State University
Philip Kyle, New Mexico Institute of Technology
Rick LaHusen, Cascade Volcano Observatory
Patrice Cappelaere, Vightel Corporation
Sensorweb Concept

- Data sources
- Processing
- Tasking
Examples

- Directing a pointable satellite to track volcanic activity as measured by ground sensors.
- Directing a subsurface submersible to investigate a possible eddy event as detected by surface radar.
- Noting the signature of earthquakes from seismographic and GPS sensors and allocating a higher data rate of acquisition from those best placed to measure the areas likely to have future activity.
OGC Services - Overview

- Enable generic web access to sensors
- To
 - task to acquire new data
 - acquire archived data,
 - subscribe to alerts, and
 - process data.
Sensor Planning Services

- used to:
 - determine if a sensor is available to acquire requested data.
- For example, using the SPS, an observation request to a space asset can be issued to
 - acquire science data,
 - determine the status of an existing request and
 - cancel a previous request.
Sensor Observation Service

- Used to retrieve engineering or science data. This includes:
 - access to historical data as well as
 - data requested and acquired from the SPS.
The Web Processing Service (WPS)

- Used to perform a calculation on the acquired sensing data
- This includes processing the raw data into derivative products such as:
 - vegetation indices,
 - soil moisture,
 - burn areas,
 - lava flows,
 - flood coverage areas
 - effusions rates,
 - etc.
Sensor Alert Service

- used to publish and subscribe to alerts from space, ground, and air assets.
- Users register with this service and provide conditions for alerts.
- When these conditions are met by the acquired data, alerts containing the data along with time and location of the event are automatically issued to the user.
SensorML

- Used to provide a description of the space, air, and ground instruments and their associated products and services
- SensorML provides a high level description of sensors and observation processes using an XML schema methodology.
- It also provides the functionality for users to discover instruments on the web along with services to task and acquire sensor data (such as the SPS, SOS, SAS, and WPS).
EO-1 and Ikhana (UAS/ARC, GSFC)

- EO-1 imagery of the Witch Fire – 23 October 2007
- UAS Flight Path (on Sumer 2007 flight)
- Geobliki Mashup of JPL thermal product
Kilauea Deployment (Davies/JPL)

- Recently deployed SO2 sensors to Pu’uoa vent (HVO) (sensors built by Behar/JPL)
- Sensors integrated into volcano monitoring suite (Davies)
- OGC compliant services under development (AIG)
Mount Erebus Collaboration (Davies/JPL, Kyle/NMT)

- Linkup with in-situ sensors (Mt. Erebus Volcano Observatory/ NMT/Kyle)
- OGC Services under development
 - Sensor Alert Service, Sensor Observation Service
Mt. Erebus – Automated processing

- On-demand modeling of
 - Thermal output → sub-pixel lava coverage → effusion rate
- Implemented via Web Processing Services (WPS)
CVO/WSU/MSH Collaboration

- Deploying Sensors to Mount Saint Helens
- Linkage with ground-space sensorweb
OASIS – CVO/WSU/MSH (Song/WSU PI)

Hardware Nodes (operations) USGS lead

Node SW Dev (WSU lead)

Space Segment Event Detection Control Center (JPL Lead)

Comm link to WSU/CVO
JPL Plans

- Control Center and event detection frameworks applicable to wide range of domains (Undersea)
- JPL/GSFC/Vightel to provide EO-1 SPS 1.0 as Open Source
- JPL to also provide SPS, SOS, SAS for MSH CVO sensors
Fire Sensor Web Scenario (1 of 7)

Fire is spotted...

Fire is initially, roughly located by MODIS/Rapidfire

Fire observer reports fire

September 07
UAV sent initial coordinates of fire location

Fire is initially, roughly located by MODIS/Rapidxfire

Fire observer reports fire
UAV responds to fire alert

Fire is initially, roughly located by MODIS/rapidfire

UAVSAR generates flight plan to cover the alerted fire area and executes plan

Fire observer reports fire
UAV collects and processes fire data

Fire is initially, roughly located by MODIS/rapidfire

UAVSAR generates flight plan to cover the alerted fire area and executes plan

fuel loading map

used with wind, elevation information to predict likely fire progression

September 07
UAV tracks fire progression

Fire is initially, roughly located by MODIS/rapidfire

UAVSAR generates flight plan to cover the alerted fire area and executes plan

fuel loading map
used with wind, elevation information to predict likely fire progression

UAVSAR autonomously alters flight plan to track fire progression – providing precise fire progression data

Fire observer reports fire

September 07
Fire Sensor Web Scenario (5 of 7)

UAV calls in other space assets

- **Fire is initially, roughly located by MODIS/rapidfire**

- **UAVSAR generates flight plan to cover the alerted fire area and executes plan**
 - **fuel loading map** used with wind, elevation information to predict likely fire progression

- **Fire observer reports fire**

- **Precise fire location enables autonomous response of other assets (e.g. EO-1) to also acquire fire data**

- **UAVSAR autonomously alters flight plan to track fire progression – providing precise fire progression data**

September 07
UAV continues to re-plan and track fire

Fire is initially, roughly located by MODIS/rapidfire

Flight continues until alerts or resources are exhausted.

UAVSAR generates flight plan to cover the alerted fire area and executes plan

Fuel loading map

Precise fire location enables autonomous response of other assets (e.g. EO-1) to also acquire fire data

UAVSAR autonomously alters flight plan to track fire progression – providing precise fire progression data

September 07
3.3.1 Interactive Observatory Facility Services

3.3.2 Event Response Services

3.3.3 Portable Control SW

3.3.4 Multi Objective Observation Catalog

3.3.5 Planning Services

3.3.6 Facility/Asset Protection Services

3.3.7 Mission Simulator
Related Work

- Many NASA AIST efforts (sensorwebs)
- Multi-rover coordination (MISUS/JPL, CMU, others)
- Multi-agent systems for space (Clement, Barrett et al.)
- Marine autonomous systems (Leonard/Princeton, Henrik/MIT, MBARI, ...)
- ...
Conclusions

- Space assets are being networked with air, sea, and ground assets
- Coordination of assets automated through use of OGC Web services
- Enables multiple perspective science study
- Applicable across wide range of science disciplines: volcanology, flooding, wildfires, ...
- Applicable across wide range of assets: space, air, marine, ground